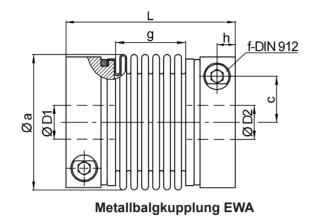
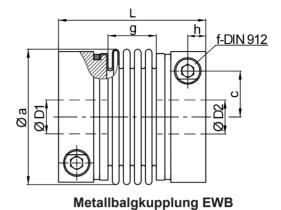
Betriebsanleitung Metallbalgkupplungen EWA, EWB, EWC, EWF

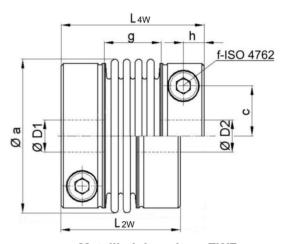

ENEMAC.de sales@enemac.de



Inhalt

- 1. Montagezeichnung
 - 2. Konstruktives
 - 2.1 Aufbau
 - 2.2 Funktion
- 3. Auslegung der Kupplung
 - 3.1 Definitionen
- 3.2 Auslegung nach dem Drehmoment
- 3.3 Auslegung nach der Torsionssteife
- 3.4 Auslegung nach dem Wellendurchmesser
 - 3.5 Lebensdauer der Kupplung
 - 3.6 Maximale Belastung
 - 3.7 Lagerbelastung
 - 3.8 Betriebstemperaturen
 - 3.9 Betriebsdrehzahlen Wuchtgüte
 - 3.10 Wartung und Verschleiß
 - 4. Auslegung der Bohrungsdurchmesser
 - 5. Berechnung des Drehmomentes
 - 5.1 Formeln
 - 6. Vorsichtsmaßnahmen
 - 7. Montage und Demontage
 - 7.1 Ausrichten der Wellen
 - 7.2 Welle-Nabe Verbindung
 - 7.3 Demontage
 - 7.4 Hinweise
 - 8. Wartung
 - 9. Ergänzungen
 - 9.1 Garantie
 - 9.2 Sicherheitsvorschriften
 - 9.3 Urheberrecht
 - 9.4 Ersatzteile
 - 9.5 Vorbehalt

1. Montagezeichnung:



ENEMAC.de sales@enemac.de

g h f-ISO 4762

Metallbalgkupplung EWC

Metallbalgkupplung EWF

2. Konstruktives:

2.1 Aufbau:

Die Metallbalgkupplung besteht aus drei Hauptkomponenten, zwei Nabenteilen und einem Balg. Die Typen EWA und EWB sind beidseitig mit einer radialen Klemmnabe aus hochfestem Aluminium ausgestattet, die Type EWF besitzt beidseitig radiale Klemmnaben aus Stahl, während diese bei Type EWC aus Edelstahl bestehen. Bei allen Varianten werden Edelstahlbälge verwendet.

2.2 Funktion:

Metallbalgkupplungen sind Ausgleichskupplungen zur spielfreien, winkelgetreuen Übertragung von Drehmomenten mit einer möglichst hohen Verdrehsteifigkeit (Torsionssteife) und einem möglichst niedrigen Massenträgheitsmoment. Als Verbindungs- und Ausgleichselement dient ein Metallbalg. Dieser kann axialen, lateralen und angularen Wellenversatz ausgleichen.

3. Auslegung der Kupplung:

3.1 Definitionen:

a) Kupplungs-Nennmoment: T_{KN} [Nm]

Das Nennmoment der Kupplung gibt die Grenzbelastung der Dauerwechselfestigkeit an. Wird im Normalbetrieb $T_{\rm KN}$ nicht überschritten, können unendlich viele Arbeitszyklen ausgeführt werden (s. auch 3.5 Lebensdauer der Kupplung).

b) Massenträgheitsmoment: J_K - [10⁻³ kgm²]

Die Kupplungswerte für das Massenträgheitsmoment gelten für mittlere Nabenbohrungen im angegebenen Durchmesserberich D_{\min} / D_{\max}

Umrechnung: $[kgcm^2] = [10^{-4} kgm^2]$

c) Torsionssteifigkeit: C_{TK} - [Nm / arc min]

Bei der Angabe der spezifischen Torsionssteife (Verdrehsteifigkeit) aller Kupplungsbaureihen wurde eine Umstellung von der bisherigen Einheitsangabe [10³ Nm/rad], auf die Einheit "Newtonmeter pro Winkelminute" vorgenommen.

Dadurch wird dem Konstrukteur recht einfach ermöglicht anhand des Betriebsdrehmomentes die resultierenden Verdrehwinkelfehler zu ermitteln (s. 3.3). 60 Winkelminuten (bzw. Bogenminuten) entsprechen einem Winkelgrad. Hieraus ergibt sich folgender Umrechnungsfaktor:

1 rad = 57,3° = 3438 arcmin [10³ Nm/rad = 0,291 Nm/arcmin] bzw. [1 Nm/arcmin = 3438 Nm/rad]

Beispiel: Größe EWA 170: 17.5 Nm/arcmin = 60 kNm/rad

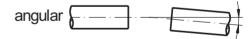
d) Maximaler Wellenversatz: [mm]

Größtmaß der zulässigen Fluchtungsfehler zwischen An- und Abtriebswelle resultierend aus der Dauerwechselfestigkeitsberechnung für die Ausgleichselemente. Bei Betrieb unterhalb der zulässigen Versatzwerte können unendlich viele Lastwechsel ausgeführt werden. In Ausnahmefällen (z. B. Montage) bzw. bei reduzierten Lastwechselzahlen dürfen die Versatzwerte zum Teil deutlich höher liegen (bitte Rücksprache).

e) Lateral- bzw. Parallelversatz:

Bei deutlicher Überschreitung des zulässigen Versatzwertes kann übermäßiger Verschleiß des Metallbalgs auftreten. Bei Montage besonders beachten!

ENEMAC.de sales@enemac.de


f) Axialversatz:

Meist unproblematisch (Wärmeausdehnung)

g) Angularversatz:

Meist unproblematisch - zulässiger Maximalwert ist 1 bis 2 Grad.

h) Federsteife - axial / lateral: [N/mm]

Rückstellkräfte des Metallbalgs, resultierend aus Fluchtungsfehlern.

3.2. Auslegung nach dem Drehmoment:

In der Regel wir die Kupplungsgröße aufgrund des Drehmomentes ausgewählt. Zur exakten Bestimmung des erforderlichen Antriebsmomentes sind meistens aufwendige Berechnungen durchzuführen (s. Formelsammlung). Ist die Baugröße des Motors festgelegt, kann das erforderliche Kupplungsnennmoment überschlägig wie folgt ermittelt werden:

$$T_{KN} > 1,25 \times TA_{max} \times i$$

TA_{max} = Spitzendrehmoment des Motors i = Über- bzw. Untersetzung des Zahnriementriebes bzw. Stirnradgetriebes

3.3 Auslegung nach der Torsionssteife:

Bei hohen Genauigkeitsansprüchen (Positionierung, Gebersystem) können Übertragungsfehler durch eine zu große elastische Verformung der Kupplung ein Auswahlkriterium darstellen. Der aus der Drehmomentbelastung resultierende Verdrehwinkel "αΤ" läßt sich wie folgt berechnen:

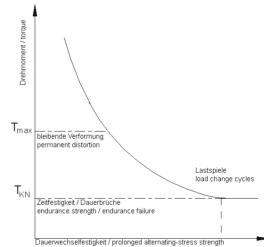
$$\alpha T = \frac{TA}{C_{TK}}$$

[Bogenminuten] mit TA = Antriebsmoment [Nm] / C_{TK} = Torsionssteife der Kupplung [Nm/arcmin]

3.4 Auslegung nach dem Wellendurchmesser:

Grundsätzlich sollte nach der Festlegung des Kupplungstypes eine Überprüfung der vorgegebenen Wellendurchmesser mit dem zulässigen Durchmesserbereich (D_{\min}/D_{\max}) der Nabenbohrung stattfinden. Falls der Wellendurchmesser in Relation zum Drehmoment überdimensioniert, d. h. größer als D_{\max} der Nabe ist, muss eine andere Kupplungstype oder Baugröße gewählt werden.

Hinweis: Nabenbohrungen kleiner als D_{min} sind möglich; eine sichere Übertragung des Nennmomentes ist jedoch nicht gewährleistet, d. h. eine Reduzierung von T_{KN} ist erforderlich.


3.5 Lebensdauer der Kupplung:

Die Lebensdauer der Ausgleichskupplungen wird im Wesentlichen durch die Höhe des Drehmomentes und den vorhandenen Wellenversätzen bzw. Fluchtungsfehlern bestimmt. Werden die zulässigen maximalen Werte für den Axial-, Lateral- und Winkelversatz nicht überschritten und liegt gleichzeitig das Betriebsdrehmoment unterhalb des Kupplungsnennmoments $T_{\rm KN}$ befindet sich die Kupplung im Bereich der Dauerwechselfestigkeit.

Dauerbetrieb rund um die Uhr ist möglich, bzw. es können unendlich viele Beschleunigungs- und Verzögerungsphasen ausgeführt werden, ohne dass ein betriebsbedingter Ausfall der Kupplung zu erwarten ist.

In Ausnahmefällen können die Metallbalgkupplungen kurzzeitig um maximal 100 % (2 x $T_{\rm KN}$) überlastet werden. Die jeweilige Welle-Nabe-Verbindung sollte hierbei jedoch gesondert berechnet werden.

ENEMAC.de sales@enemac.de

3.7 Lagerbelastung:

Durch die Flexibilität der Ausgleichskupplungen in alle Richtungen werden nennenswerte Lagerbelastungen bzw. Rückstellkräfte trotz eventueller Axial-, Lateral-, oder Winkelverlagerungen von der Antriebs- zur Abtriebswelle vermieden. Dies verhindert einen vorzeitigen Ausfall oder erhöhten Verschleiß der Wälzlagerung, wodurch aufwendige und teure Reparaturen erheblich reduziert werden.

3.8 Betriebstemperaturen:

Die Einsatzgrenze der Metallbalgkupplungen EWC und EWF liegen bei 350 °C, die der EWA und EWB bei 200 °C; hohe Betriebstemperaturen müssen durch einen entsprechenden Korrekturfaktor berücksichtigt werden.

3.9 Betriebsdrehzahlen - Wuchtgüte:

Aufgrund der präzisen Fertigung und dem rotationssymmetrischen Aufbau, bzw. des zusätzlichen Wuchtstifts sind die Ausgleichskupplungen generell auch ohne Auswuchten für hohe Drehzahlen bis 20.000 min⁻¹ geeignet. Die Standardwuchtgüten betragen etwa Q6,3 oder Q16.

3.10 Wartung und Verschleiß:

Die Ausgleichskupplungen sind unter normalen Bedingungen wartungs- und verschleißfrei.

4. Auslegung der Bohrungsdurchmesser (ØD1 und ØD2):

Die Passung zwischen Nabe und Welle ist als Übergangspassung auszulegen, wobei die Bohrung der Nabe eine H7 Passung besitzt.

5. Berechnung des Drehmomentes:

5.1 Formeln:

Überschlägig kann das erforderliche Kupplungsmoment T_k nach folgender Formel berechnet werden:

$$T_A$$
 = Antriebsmoment [Nm] f_B = Betriebsfaktor

$$T_{K} = T_{A} \times f_{B} < T_{KN}$$

ENEMAC.de sales@enemac.de

Der Betriebsfaktor:

Durch den Betriebsfaktor $f_{\rm B}$ (1,5-2,5) sind anwendungsspezifische Besonderheiten, wie zum Beispiel stoßartige Belastungen, zu berücksichtigen.

Das errechnete Kupplungsmoment T_K sollte das Nennmoment der ausgewählten Kupplungsgröße T_{KN} nicht übersteigen. Kurzzeitige Überlastungen auf den zweifachen Wert des Nennmomentes sind zulässig. Das Antriebsmoment ergibt sich aus den Herstellerangaben des Antriebsmotors oder kann mittels der Antriebsleistung P_A berechnet werden.

$$T_{A} = \frac{9550 \times P_{A}}{n_{B}}$$

6. Vorsichtsmaßnahmen:

Vor der Montage ist darauf zu achten, dass die Eigenschaften und Spezifikationen der Kupplung angemessen und geeignet für den Verwendungszweck sind.

Es muss ausreichend Platz für die Installation und zukünftige Wartungen zur Verfügung stehen. Stellen Sie sicher, dass das Gerät keine gefährlichen Situationen für Menschen und / oder Eigentum verursachen kann und arbeiten Sie immer unter den aktuellen Sicherheitsbestimmungen.

Mit Bezug auf die aktuelle Maschinenrichtlinie handelt es sich bei unseren Produkten nicht um eine Maschine. Der Betrieb unterliegt daher der Einhaltung aller Anforderungen der Maschine, in der das Gerät installiert wird. Werden die Anleitungen fehlerhaft ausgeführt, befreit dies ENEMAC von jeglicher Haftung.

Bei Fragen, die nicht durch diese Anleitung beantwortet werden können, oder Details zu Spezialanwendungen kontaktieren Sie bitte immer ENEMAC GmbH.

ACHTUNG!

Es ist gefährlich:

- das Produkt anders als in vorgesehener Weise zu nutzen
- das Produkt bei höheren Anforderungen als vorgesehen einzusetzen
- das Produkt eigenmächtig zu verändern oder zu manipulieren
- das Produkt mit nicht originalen Teilen zu bestücken

7. Montage und Demontage:

7.1 Ausrichten der Wellen:

Axial- und Winkelversatz sind meist unproblematisch und außerdem einfach zu messen. Um den Lateralversatz zu ermitteln, empfiehlt es sich folgendermaßen zu verfahren: Eine Messuhr mit entsprechender Halterung an einen Wellenzapfen oder auf die zweite Kupplungshälfte aufsetzen. Jetzt werden die Wellen mit der Messuhr verdreht und der Ausschlag abgelesen. Der existente Parallelversatz ist die Hälfte des Gesamtausschlages. Die zulässigen Maximalwerte für die Wellenversätze müssen den technischen Datenblättern der entsprechenden Baureihen entnommen werden.

ENEMAC.de sales@enemac.de

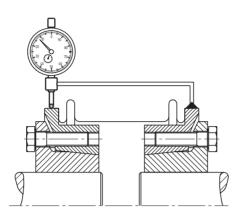


Bild: Ausichtung der Wellen

7.2 Welle-Nabe Verbindung:

Die Kupplungen werden in der Regel mit Fertigbohrungen, in Ausnahmefällen auch vorgebohrt geliefert. Die Passung Welle / Nabe ist als Übergangspassung (Beispiel: Nabenbohrungsdurchmesser 28 G6 / Wellendurchmesser 28 k6) zu wählen. Generell ist dafür zu sorgen, dass die Oberfläche der Welle und der Nabenbohrung öl- und fettfrei, sowie von Schmutzpartikeln gesäubert ist. Durch eine vorhandene Passfedernut in der Welle wird die Funktion der kraftschlüssigen Verbindung nicht beeinträchtigt, (evtl. halbe Passfeder einlegen).

Angefaste Kanten an den Stirnseiten ermöglichen grundsätzlich bei allen Versionen auch eine Blindmontage.

Radiale Klemmnabe:

Zulässiges Passungsspiel Welle-Nabe: min 0,01 mm / max. 0,04 mm.

Die Montage ist durch Anziehen nur einer radial angeordneten Klemmschraube (ISO 4762) sehr einfach durchzuführen. Die Werte für die entsprechenden Anzugsmomente sind den Datenblättern zu entnehmen. Eine Bohrung in der Anbauglocke ist völlig ausreichend zum Anziehen der Klemmschraube.

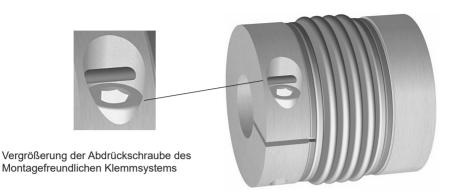
Anziehdrehmomente der Klemmschrauben:

in Nm:

M2,5	M3	M4	M5	M6	M8	M10	M12	M14	M16
1	2	4	8	14	35	65	115	180	290

Achtung: Für einige Baureihen bzw. Baugrößen gelten abweichende Anziehdrehmomente. S. hierzu Datenblatt

Lösedrehmomente der Klemmschrauben:


in Nm:

	M4	M5	M6	M8	M10	M12	M14	M16
Γ	3	5	8	15	20	25	25	30

7.3 Demontage:

Zur Demontage der Metallbalgkupplung werden die Klemmschrauben mittels Drehmomentschlüssel gelöst. In besonderen Fällen kann auch ein handelsüblicher Innensechskantschlüssel verwendet werden. Hierbei beachten Sie bitte die Lösedrehmomente unter Punkt 7.2

Die Typen EWA, EWB und EWF sind zusätzlich mit einem montagefreundlichen Klemmsystem (s. nachfolgende Bilder) ausgestattet.

- Keine Zusatzwerkzeuge erforderlich
- Keine Beschädigung der Nabenbohrung
- Keine Zerstörung der Kupplung bei Demontage

ENEMAC.de sales@enemac.de

Die Kupplungsklemmnabe ist spielfrei und kraftschlüssig mit der Welle verbunden

Die Kupplungsklemmnabe wird für die Montage elastisch ausgeweitet

7.4 Hinweise:

Da die Metallbälge aus dünnem Edelstahlblech bestehen, ist besondere Sorgfalt bei der Montage und Demontage erforderlich. Beschädigungen am Balg können die Kupplung unbrauchbar machen. Nabenbohrungen kleiner als D_{min} sind möglich, eine sichere Übertragung des Nennmoments ist jedoch nicht gewährleistet. Bei kleineren Wellendurchmessern werden die Konusnaben (größere Wanddicke) zusätzlich geschlitzt. Weitere typenbezogene Einzelheiten sind den Datenblättern zu entnehmen.

8. Wartung:

Die Kupplungen sind wartungsfrei. Es wird jedoch empfohlen, die Ausrichtung und das Anzugsmoment der Schrauben und Muttern nach den ersten Betriebsstunden und danach in regelmäßigen Abständen zu prüfen.

9. Ergänzungen:

9.1 Garantie:

Die Gewährleistung beträgt 12 Monate ab Lieferdatum; bei bestimmungsgemäßem Gebrauch im 1-Schicht Betrieb. Der Gewährleistungsanspruch erlischt, wenn Schäden durch unsachgemäße Bedienung entstehen. Zum Erlöschen jeglicher Gewährleistungsansprüche führen Reparaturarbeiten oder Eingriffe, die von hierzu nicht ermächtigten Personen vorgenommen werden und die Verwendung von Zubehör und Ersatzteilen, auf die unsere Metallbalgkupplungen nicht abgestimmt sind.

9.2 Sicherheitsvorschriften:

Unabhängig von den in dieser Betriebsanleitung aufgeführten Hinweisen, gelten die gesetzlichen Sicherheitsund Unfallverhütungsvorschriften. Jede Person, die vom Betreiber mit der Bedienung, Wartung und Instandsetzung der Metallbalgkupplung beauftragt ist, muss vor Inbetriebnahme die Betriebsanleitung gelesen und
verstanden haben. Instandsetzer der Metallbalgkupplung sind für Arbeitssicherheit grundsätzlich selbst verantwortlich. Die Beachtung aller geltenden Sicherheitsvorschriften und gesetzlichen Auflagen ist Voraussetzung, um Schäden an Personen und dem Produkt bei Wartung, sowie Reparaturarbeiten zu vermeiden. Die
sachgemäße Instandsetzung der ENEMAC Produkte setzt entsprechend geschultes Fachpersonal voraus.
Die Pflicht der Schulung obliegt dem Betreiber, bzw. Instandsetzer. Dieser hat dafür Sorge zu tragen, dass
die Bediener und zukünftigen Instandsetzer für das Produkt fachgerecht geschult werden.

9.3 Urheberrecht:

Die vorliegende Betriebsanleitung bleibt urheberrechtliches Eigentum von Enemac. Sie wird nur unseren Kunden und den Betreibern unserer Produkte mitgeliefert und gehört zum Lieferumfang der Metallbalgkupplung. Ohne unsere ausdrückliche Genehmigung dürfen diese Unterlagen weder vervielfältigt noch dritten Personen, insbesondere Wettbewerbsfirmen, zugänglich gemacht werden.

9.4 Ersatzteile:

Es dürfen nur Ersatzteile verwendet werden, die den vom Hersteller, bzw. Lieferer festgelegten Anforderungen entsprechen. Dies ist bei Originalersatzteilen immer gewährleistet. Unsachgemäße Reparaturen, sowie falsche Ersatzteile führen zum Ausschluss der Produkthaftung, bzw. Gewährleistung. Bei der Bestellung von Ersatzteilen ist es unumgänglich, Type, Größe und Nummer der Auftragsbestätigung dieser Metallbalgkupplung anzugeben um Fehllieferungen zu vermeiden.

9.5 Vorbehalt:

Technische Änderungen behalten wir uns vor. Änderungen, Irrtümer und Druckfehler begründen keinen Anspruch auf Schadensersatz.

Anlage: Datenblatt

ENEMAC.de sales@enemac.de